

E

The NOAA Environmental Modeling System (NEMS)

William. M. Lapenta

Acting Director Environmental Modeling Center

Mark Iredell, Tom Black, Nicole Mckee, Sarah Lu, Ed Colon, Ratko Vasic, Jun Wang, Weiyu Yang, **Shrivinas Moorthi, Dusan Jovic**

NOAA/NWS/NCEP

Eugene Mirvis RAL/NCAR

Presentation Outline

- **► NCEP/EMC Mission**
- Motivation for NEMS
- **►NEMS** Description
- > Example Applications
 - North American Mesoscale (NAM) Forecast System
 - Moving Nests (NMMB global + Regional)
 - Global Aerosols (GFS and GOCART)
- Future Plans

NWS Seamless Suite of Forecast Products Spanning Weather and Climate

Linkage of Model Systems Within Production Suite

Production Suite on Supercomputer

NEMS Incorporates the Earth System Modeling Framework

Earth System Modeling Framework

Motivation

In climate research and numerical weather prediction...

increased emphasis on detailed representation of individual physical processes; requires many teams of specialists to contribute components to an overall modeling system

In computing technology...

increase in hardware and software complexity in high-performance computing, as we shift toward the use of scalable computing architectures

In software ...

emergence of frameworks to promote code reuse and interoperability

The ESMF is a focused community effort to tame the complexity of models and the computing environment. It leverages, unifies and extends existing software frameworks, creating new opportunities for scientific contribution and collaboration.

Motivation for the Development of NEMS

- Develop a common superstructure for NCEP Production Suite components
- Reduce overhead costs and provide a flexible infrastructure in the operational environment
 - Concurrent nests
 - NAM executed concurrent with GFS
 - Stochastic ensemble generation
 - Coupled atmosphere/ocean/land/icesystems becoming a NOAA requirement
- Modularize large pieces of the systems with ESMF components and interfaces—concurrent execution
- NOAA contribution to the National Unified Operational Prediction Capability (NUOPC) with Navy and Air Force

System Characteristics

- Divide atmospheric models down into Dynamics and Physics components but no further
- Take history file I/O outside the science parts and into a common Write component
- Keep science code and parallelization code in the respective models the same as before
- Follows NUOPC defined standards and protocols
- Eventual support to community through Developmental Test Center (DTC)

NEMS Component Structure

Below the dashed line the source codes are organized by the model developers.

First Operational Implementation with the NAM in Aug 2011

- 12 km NAM will still run to 84 hr
- Fixed domain nests run to 60 hr
 - 4 km CONUS
 - 6 km Alaska
 - 3 km HI & PR
- Single locatable 1.33 km (CONUS) or 1.5 km (Alaska) nest to 36hr
- Nests
 - Static, 1-way
 - Boundaries from parent every timestep
 - Nest is "grid-associated" with parent (same orientation w.r.t. earth)
 - Moving nests and 2-way interaction under development

Future Plans for NEMS at NCEP

Global, CONUS & Hurricane

84-hour forecasts from 12Z 17 Sep 2010 Lowest model layer winds (m/s).

Internet Link Local link

- Global NMM-B in the outermost domain
- NAM/NMM-B inside the global domain
- CONUS nest inside the NAM
- Moving nests of Hurricanes Igor and Julia
- Configuration within a single executable

Future Plans for NEMS at NCEP

Global, CONUS & Hurricane

84-hour forecasts from 12Z 17 Sep 2010 Lowest model layer winds (m/s).

Internet Link
Local link

NEMS GFS Aerosol Component (NGAC)

- Dynamics, physics and chemistry run on the same grid in the same decomposition
- GOCART does not own aerosol tracers (i.e, do not allocate aerosol tracer fields)
- PHY2CHEM coupler component transfers/converts data from PYHS to GOCART import state
 - Convert units (e.g., precip rate, surface roughness)
 - Calculations (e.g., soil wetness, tropopause pressure, relative humidity, air density, geopotential height)
 - Flip the vertical index for 3D fields from bottom-up to top-down
- CHEM2PHY coupler component transfers data from GOCART to PHYS

NEMS GFS Aerosol Component Configuration

Experimental (non-operational)

- Executable compiled from NEMS trunk code repository
- 120-hr dust-only forecast
- Once per day (00Z)
- 3-hourly products: 3d distribution of dust aerosols (5 bins from 0.1 – 10 μm)
- Automatic output archive, post processing and web update since June 11, 2011
- Same physics and dynamics as operational GFS with the following exceptions:
 - Lower resolution (T126 L64)
 - Use RAS with convective transport and tracer scavenging
 - Aerosol-radiation feedback is turned off

Future Plans

- NEMS will include the following components by the end of FY11
 - GFS
 - GEFS
 - Unified Postprocessor
 - FIM
 - Multi-model ensemble capability
 - GRIB2 output
- FY12 and beyond
 - NMM nested in GFS
 - Moving nests
 - Coupled ocean-atmosphere
 - Tiled land model
 - netCDF output
 - ARW

Backup Slides

Program Flow:: WRF/DTC/DET

NCEP Version of Program Flow

WF:: NCEP SREF Version SREF

